|
|
|
|
|
|
|
|
寺廟大氣中焚香之醛酮類化合物與重金屬成分特徵分析=Characteristics of Carbonyl Compounds and Heavy Metals in the Air of Incense Burning from the Temples |
|
|
|
Author |
項堯楷 (著)=Xiang, Yao-Kai (au.)
|
Date | 2019 |
Pages | 79 |
Publisher | 中臺科技大學 |
Publisher Url |
https://www.ctust.edu.tw/
|
Location | 臺中市, 臺灣 [Taichung shih, Taiwan] |
Content type | 博碩士論文=Thesis and Dissertation |
Language | 中文=Chinese |
Degree | master |
Institution | 中臺科技大學 |
Department | 環境與安全衛生工程系碩士班 |
Advisor | 賴嘉祥 |
Publication year | 107 |
Keyword | 寺廟=Temple; 焚香=Incense burning; 粒徑分佈=Heavy metals; 重金屬=Size distributions; 醛酮化合物=Aldehydes and Ketones; 健康風險評估=Health-risk assessment |
Abstract | 寺廟焚香在燃燒過程中,含有氣相之醛酮化合物與金屬顆粒在寺廟空間中,對民眾或廟方工作人員造成健康上的影響。2018年採集南投縣兩間A與B寺廟各7天及9個天之焚香空氣樣本,醛酮化合物與氣膠樣本分別是利用矽膠吸附管與Moudi 四階個人式高流量空氣採樣器採集8小時,而醛酮化合物與金屬元素則是分別利用高效能液相層析儀紫外線偵測器(HPLC/UV)及感應耦合電漿源子發射光譜儀(ICP/OES)進行分析。在焚香過程中,A寺廟最高的質量濃度為粒徑<1.0m之12.643.99 g/m3,而粒徑PM10-2.5對於總懸浮粒徑質量比值為16.65%5.89%,PM2.5-1和PM1分別占總懸浮粒徑質量之18.11%和46.08%。而B寺廟最高的質量濃度為粒徑2.5-1.0m之7.623.02 g/m3,而粒徑PM10-2.5與與PM1對於總懸浮粒徑質量比值分別占17.39%和52.19%。B寺廟有推廣減香活動,其A寺廟總懸浮微粒是B寺廟之1.42倍,且不論寺廟是否減香,其焚香燃燒之粒狀物皆以奈米粒狀物(PM粒徑<1m)佔總懸浮微粒約50%,顯示對人體危害值得注意。在有害重金屬元素濃度方面,A寺廟之濃度最高為鋅(5.05 g/m3)、鉛(0.32 g/m3)和錳(0.27 g/m3),而B寺廟最高為鋅(3.78 g/m3),其次是錳、銅和鉛,濃度約0.22-0.29 g/m3。醛酮類化合物之危害暴露方面,A寺廟之濃度最高為乙醛(13.056.19 g/m3)、甲醛(12.943.55 g/m3)和丙烯醛(8.815.06 g/m3),而B寺廟為甲醛(11.664.79 g/m3)、乙醛(6.203.01 g/m3)和對甲基苯甲醛(2.751.08 g/m3)。 在健康暴露風險評估方面,A寺廟與B寺廟之焚香中鎘、鈷、鉻、鎳、鉛、鋅與砷之致癌金屬在總懸浮微粒中的總致癌風險值為8.810-5及7.010-5。甲醛、乙醛及丙烯醛之暴露危害並未超過可接受之致癌風險值(10-6)。值得注意的是,寺廟工作人員的健康風險評估值顯示鉻、鎳、鋅與砷之重金屬均超過致癌風險值(10-6),表示寺廟焚香環境中是有潛在的致癌風險存在。因此,推動減香活動可以達到健康環境與經濟效應之雙贏之目的。
The health effects of aldehydes, ketones and metal-containing incense-particles on staffs at temples during incense burning periods. Samples were collected over 7 and 9 working days at A and B temple in Nantou County, 2018. Carbonyl compounds and aerosol samples were collected for 8 h using the solid sorbent tube and 4 impaction stages of Moudi Impactor, respectively. Carbonyl compounds and metal-containing particles were analyzed using a high performance liquid chromatography with UV detector (HPLC/UV) and an inductively coupled plasma with optical emission spectroscopy (ICP-OES).Measurement results show that the particles with the highest mass concentrations were PM<1.0 (12.643.99 g/m3) at A temple. The mass ratios of PM10-2.5 to total PM was16.65%5.89%. The PM2.5-1 and PM1 constituted 18.11% and 46.08% of the total PM mass, respectively. Particles with the highest mass by size were PM2.5-1 (7.623.02 g/m3) at B temple. The mass ratios of PM10-2.5 relative to total PM and those of PM1 to total PM were 7.39% and 52.19%, respectively. The mass of total particles at A temple was approximately 1.4 times higher than that at B temple because of incense reduction at B temple. Overall, the mass ratios of PM1 relative to the total particles 46.08 to 52.19%.The most abundant metal elements in all particle sizes on all sampling days were Zn (5.05 g/m3), Pb (0.32 g/m3) and Mn (0.27 g/m3) at A temple. The most abundant metal elements of all fractions were Zn (3.78 g/m3); these were follow by Mn, Cu and Pb with concentrations of 0.22 to 0.29 g/m3 at B temple. The formaldehyde, acetaldehyde, Acrolein and p-methyl benzaldehyde were identified during incense burning periods, the concentrations ranges from 2.75 to 13.05 g/m3. Cancer risks of carcinogenic metals (Cd, Co , Cr, Ni, Pb, Zn and As) in total particles were 8.810-7and 7.010-5 for staffs at A and B temple, respectively. The cancer risk of formaldehyde, acetaldehyde and Acrolein did not exceed the 10-6 acceptable level. Significantly, health risk assessment revealed that the risk values (Cr, Ni, Zn and As) for staffs were all above the guidelines of cancer risk (10-6) at two temples, indicating that there are potential cancer risk at the temples workplace during incense burning periods. Therefore, the policy of incense reduction might achieve healthy environments and economic win-win goal.
|
Table of contents | 致謝 I 摘要 II 目錄 V 圖目錄 VII 表目錄 VIII 第一章 前言 1 1-1研究背景 1 1-2研究目的 3 第二章 文獻回顧 4 2-1焚香種類及生產量 4 2-2寺廟登記數量及地理位置分布 7 2-3焚香產生的污染物及健康危害 9 2-3-1空氣中懸浮微粒粒徑分布與特性 9 2-3-2醛酮化合物性質 10 2-3-3醛酮化合物來源 12 2-3-4醛酮化合物對人體健康之危害 14 2-3-5重金屬來源及性質 18 2-3-6重金屬對人體之危害 20 第三章 研究方法 25 3-1研究流程與架構 25 3-2 現場採樣頻率與規劃 27 3-3 實驗設備與材料 29 3-4 粒徑分佈 30 3-5 濾紙處理程序與粉塵秤重分析 32 3-6 金屬元素及醛酮化合物分析 33 3-6-1重金屬分析 33 3-6-2醛酮化合物分析 33 3-7 分析方法之品保與品管 35 3-8 呼吸系統沉積量推估 40 3-9 健康風險評估 41 第四章 結果與討論 42 4-1 廟宇焚香之懸浮微粒濃度與粒徑分佈 42 4-1-1 焚香香爐區域之懸浮微粒濃度與粒徑分佈 42 4-1-2 寺廟室內與周界之懸浮微粒濃度日變化分佈 44 4-2 廟宇焚香之金屬特徵濃度 51 4-2-1 焚香金屬濃度與粒徑分佈 51 4.2.2 焚香金屬濃度之相關性分析 51 4-3 廟宇焚香之醛酮類化合物濃度 47 4-4 焚香懸浮微粒沉機率與健康風險評估 48 4-4-1 呼吸系統沉機率推估 48 4-4-2 健康風險評估 50 第五章 結論與建議 51 5-1結論 51 5-2 建議 52 參考文獻 53 圖目錄 圖1 研究流程與架構圖 26 圖2 A與B寺廟之粒狀物粒徑分布圖 43 圖3 A寺廟內部與周界之粒狀物日濃度變化圖 46 圖4 環保署埔里監測站之粒狀物日濃度變化圖(2018/10) 47 圖5 B寺廟內部與周界之粒狀物日濃度變化圖 49 圖6 環保署埔里監測站之粒狀物日濃度變化圖(2018/11) 50 圖7 A寺廟與B寺廟之焚香過程中大氣中醛酮化合物濃度 47 表目錄 表1 全國香產業者種類 5 表2 香產業分布間數(北部、中部、南部、東部、外島) 6 表3 寺廟分布間數(北部、中部) 7 表4 寺廟分布間數(南部、東部、外島) 8 表5 13 種醛酮化合物之分子量與物理性質 11 表6 IRIS 毒化物致癌分級 17 表7 空氣中有害物容許濃度標準 19 表8 A與B寺廟之採樣規劃表 27 表9 2018年採樣期間之氣象資料 28 表10 醛酮標準品分析種類 30 表11 MOUDI各階層粒徑分佈 31 表12 金屬成分分析檢量線方程式 38 表13 醛酮成分分析檢量線方程式 39 表14 A寺廟內部粒狀物日濃度變化之Kolmogorov-Smirnov 檢定 45 表15 A寺廟周界粒狀物日濃度變化之Kolmogorov-Smirnov 檢定 45 表16 B寺廟內部粒狀物日濃度變化之Kolmogorov-Smirnov 檢定 48 表17 B寺廟周界粒狀物日濃度變化之Kolmogorov-Smirnov 檢定 48 表16 A寺廟金屬粒徑濃度 42 表17 B寺廟金屬粒徑濃度 44 表20 A與B寺廟之粒狀物中金屬元素之相關性分析 46 表21 醛類對工作人員及民眾之健康風險評估 48 表22 沉積於呼吸系統之平均總金屬濃度(g/m3) 49 |
Hits | 997 |
Created date | 2022.09.26 |
Modified date | 2023.01.05 |
|
Best viewed with Chrome, Firefox, Safari(Mac) but not supported IE
|
|
|