This thesis presents a study of an ancient Chinese timber structure- the main hall of the Foguang temple built in China in the Tang Dynasty (857), which is regarded as one of the most important temples in that period. The research represents a detailed digital model of the structural timber components and their connectivity. The research questions are: - Firstly, how to identify and represent the structural components, and the ways they are assembled. This is not covered in the few previous studies of the temple, which just offered brief introductions and general descriptions of the construction of the timber structure. - Secondly, how to create a digital model for such a structure where there is insufficient or incompatible information. These are common issues that arise in the simulation and representation of historic architecture. The outcome of the research is the presentation of a digital model that is much more detailed than previously existing representations. During the process, two concepts were developed and adopted: - Firstly, the concept of "building an ideal model". Rather than seeking the representation of the timber structure as built, the notion outlined in this thesis is to create an ideal digital model according to the vocabulary of structural components and the predefined spatial relations of their assembly connectivity. - Secondly, the concept of "simplest adaptation". When choosing from a number of reasonable hypotheses about a component or assembly detail, it is assumed to be the simplest possible adaptation of an already accepted component or assembly detail. The thesis is organized as followings: Chapter 1: an introduction to the research on ancient Chinese architecture. Chapter 2: a review of the computer simulation and representation of historic architecture. Chapter 3: a discussion about the methodology on the concept of "building an ideal model", and the methodology for modelling when there is a lack of information. Chapter 4: a record of the digital modelling process. Chapter 5: discussions on and conclusions of the research. The thesis has an accompanying CD which contains the representation information, including: - A 2D 'Flash' presentation that shows the brief contents of the research. - 3D animations that represent in detail the timber structure and the assembly process. - A database that represents the structural components and their relations.