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Conference on Frontiers in Handwriting Recognition (ICFHR), New York: |EEE,
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TABLE II
THE RESULTS OF DIFFERENT ARCHITECTURE
Format Architecture Accuracy Rate (%)
Text Line CNN+CTC 98.71 £ 0.03
Text Line CNN+LSTM+CTC 98.60 £ 0.15
Single Character CNN 97.36
Text Line CNN+CTC_smallRF 96.16 £ 0.05

2 Yang Hailin, Lianwen Jin, and Jifeng Sun, Recognition of Chinese Text in

Historical Documents with Page-level Annotations,pp. 199-204.
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®  Yang Hailin, Lianwen Jin, Weiguo Huang, Zhaoyang Yang, Songxuan Lai, and
Jifeng Sun, Dense and Tight Detecti on of Chinese Characters in Historica
Documents: Datasets and a Recognition Guided Detector,[1IEEE Access 6 (2018):
30174-30183.
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Yang et al.,, Dense and Tight Detection of Chinese Characters in Historica
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° Yang et al., Dense and Tight Detection of Chinese Characters in Historical

Documents: Datasets and a Recognition Guided Detector,[pp . 30174-30183.
1 Yang et al., Dense and Tight Detection of Chinese Characters in Historical
Documents: Datasets and a Recognition Guided Detector,[pp . 30174-30183.
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Xie Zecheng, Yaoxiong Huang, Lianwen Jin, Yuliang Liu, Yuanzhi Zhu, Liangcai
Gao, and Xiaode Zhang, Weakly Supervis ed Precise Segmentation for Historical
Document Images,[INeurocomputing 350 (2019): 271-281.
Xie Zecheng, Yaoxiong Huang, Lianwen Jin, Yuliang Liu, Yuanzhi Zhu, Liangcai
Gao, and Xiaode Zhang, Weakly Supervis ed Precise Segmentation for Historical
Document Images,[JNeurocomputing 350 (2019): 271-281.
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13 Xie Zecheng, Yaoxiong Huang, Lianwen Jin, Yuliang Liu, Yuanzhi Zhu, Liangcai
Gao, and Xiaode Zhang, Weakly Supervis ed Precise Segmentation for Historical
Document Images,[INeurocomputing 350 (2019): 271-281.
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