|
|
|
|
|
|
|
|
金剛經的數學模型及其解之探討=The Mathematic Approach to Vajra-Praj-naparamita-sutra |
|
|
|
著者 |
林杜娟 (著)=Lin, Due-jane (au.)
;
陳家成 (著)=Chen, Chia-chern (au.)
|
掲載誌 |
佛學與科學=Buddhism and Science
|
巻号 | v.1 n.1 |
出版年月日 | 2000.07.15 |
ページ | 18 - 25 |
出版者 | 圓覺文教基金會 |
出版サイト |
http://www.obf.org.tw
|
出版地 | 臺北市, 臺灣 [Taipei shih, Taiwan] |
資料の種類 | 期刊論文=Journal Article |
言語 | 中文=Chinese; 英文=English |
キーワード | 金剛經; 實相; 禪; 思考; 般若; 解題; 陳家成; 林杜娟; sutra; thing-in-itself; zen, thinking; paradox; problem-solving; Chen, Chia-chern; Lin, Due-jane |
抄録 | 金剛經中的主句型可用命題或方程式「A等於非A」來表達. 這個命題或方程式可以名之為「金剛經命題」或「金剛經方程式」. 這樣的方程式在其本身而言是矛盾的,無解的. 但經過詳細的討論,卻可發現事實上「金剛經命題」是有具體非虛無的解存在,但這個解從群論及邏輯上而言,都是超越解本身的解. 金剛經給予的解以文字表達為「是名A」. 綜合了命題部分及解形成了完整的金剛經主句型的敘述「佛說A即是非A是名A」的數學模型「A等於非A的解就是A」.
這種解超越其本身的特性正是金剛經所要表達的內涵. 從討論「金剛經命題」或「金剛經方程式」的解形成的過程,可以幫助我們了解金剛經要表達的真正內涵:「超越」或「從中解脫」的智慧. 這個解是個通解,可以用在任何形式的問題上,幫助我們從一切問題中解脫.
The main style of Vajra-Praj-naparamita-Sutra (金剛般若波羅密經 or 金剛經) can be written as "When A is Given,it is not A at all. It is just A in name."
It's difficult to understand what A-in-itself really is, as well as what it really isn't. Instead of understanding the mysterious nature of this sutra linguistically,we take a mathematic approach to it by means of studying its main style logically. We try to express it as "A equals non-A with its nontrivial solution,A-in-itself." The nontrivial solution does exist and can be deduced successfully. We need not be caught in the dichotomy of A and non-a, nor need we study the Zen Koan "not a, but also not non-A". Nirvana can be achieved by reasonable inference. In general,the equation is true only when A satisfies at least one of the four Conditions of the Truth, namely:(1) It cannot be negated or affirmed; (2) It cannot be conditioned; (3) It cannot be proved within its own framework; and (4) It cannot be deduced from any known system of inference.
The solution is complete. It can be applied to a particular situation as well as a general one. Thus, solving the problems by main style of Vajra-Praj-naparaita-Sutra is possible and operative. By using the mathematic approach, the wisdom of this most important and difficult-to-understand sutra reveals itself. This is the wisdom free from all those which are paradoxical,as well as being a guide to find a reasonable yet practical way to real problem resolution.
|
目次 | 一. 金剛經主句型的數學模型的建構 二. 導出金剛經命題的解 1﹒空集合O不是金剛經命題的解 2﹒宇集合U不是金剛經命題的解 3﹒集合G不是金剛經命題的解 4﹒群不是金剛經命題的解 5﹒正反合定律 (矛盾統一) 不是金剛經命題的解 6﹒金剛經命題的非虛無解 (1)不能被否定的事物 (2)沒限制或界線的事物及程序 三. 討論 (一) 修行上的證悟 (二) 解決難題 四. 結論 |
ISSN | 16072952 (P) |
ヒット数 | 1701 |
作成日 | 2001.08.08 |
更新日期 | 2017.07.14 |
|
Chrome, Firefox, Safari(Mac)での検索をお勧めします。IEではこの検索システムを表示できません。
|
|
|